Cationic carbonylmanganese complexes of the olefinic ligand tri(1-cyclohepta-2,4,6-trienyl)phosphane, $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$

Max Herberhold *, Andreas Pfeifer, Wolfgang Milius
Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 1012 51, D-95440 Bayreuth, Germany

Received 3 March 2003; accepted 9 July 2003
Dedicated to Professor Dr. Dr. h.c. mult. E.O. Fischer on the occasion of his 85 th birthday

Abstract

A series of tetrafluoroborate salts of carbonylmanganese cations was obtained which contain the olefinic phosphane, $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ (1). Whereas $\mathbf{1}$ is a conventional two-electron phosphane ligand $([\mathrm{P}])$ in $\left\{\mathrm{Mn}(\mathrm{CO})_{5}[\mathrm{P}]\right\} \mathrm{BF}_{4}(\mathbf{2})$-as in the neutral bromide or trifluoroacetate complexes, cis $-\left\{\mathrm{Mn}(\mathrm{X})(\mathrm{CO})_{4}[\mathrm{P}]\right\} \mathrm{BF}_{4}\left(\mathrm{X}=\mathrm{Br}(\mathbf{4 b}), \mathrm{CF}_{3} \mathrm{COO}(\mathbf{4 d})\right)$ and mer,trans $-\left\{\mathrm{Mn}(\mathrm{X})(\mathrm{CO})_{3}[\mathrm{P}]\right\} \mathrm{BF}_{4}(\mathrm{X}=\mathrm{Br}$ $\mathbf{(5 b}), \mathrm{CF}_{3} \mathrm{COO}(\mathbf{5 d})$) - it is transformed into a four-electron chelate ligand $\left(\left[\mathrm{P}^{\prime}\right]\right)$ if $\mathbf{4 b}$ and $\mathbf{5 b}$ react with AgBF_{4} to give cis$\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}^{\prime}\right]\right\} \mathrm{BF}_{4}(7)$ and mer, trans $-\left\{\mathrm{Mn}(\mathrm{CO})_{3}[\mathrm{P}]\left[\mathrm{P}^{\prime}\right]\right\} \mathrm{BF}_{4}(8)$, respectively, $\left(\left[\mathrm{P}^{\prime}\right]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right)$. An analogous halide abstraction by AgBF_{4} converts mer $-\left\{\mathrm{Mn}(\mathrm{I})(\mathrm{CO})_{3}\left[\mathrm{P}^{\prime}\right]\right\}(\mathbf{6 c})$ into fac $-\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}^{\prime \prime}\right]\right\} \mathrm{BF}_{4}(\mathbf{9})$ which contains the phosphane as a sixelectron ligand $\left(\left[\mathrm{P}^{\prime \prime}\right]\right)$ with an η^{4}-norcaradienyl ring $\left(\left[\mathrm{P}^{\prime \prime}\right]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right)$. The coordinated η^{2}-cyclohepta-2,4,6-trienyl substituent in $\mathbf{7}$ and $\mathbf{8}$ is displaced by tert-butyl isocyanide (L) to give cis $-\left\{\mathrm{Mn}(\mathrm{CO})_{4}[\mathrm{P}](\mathrm{L})\right\} \mathrm{BF}_{4}$ ($\mathbf{1 0}$) and mer, trans$\left\{\mathrm{Mn}(\mathrm{CO})_{3}[\mathrm{P}]_{2}(\mathrm{~L})\right\} \mathrm{BF}_{4}(\mathbf{1 1})$, respectively. The structures of the new cations have been assigned on the basis of their carbonyl stretching absorption patterns in the IR spectra and by their ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra. Single-crystal X-ray structure analyses were carried out for 7 and 9 .

(C) 2003 Elsevier B.V. All rights reserved.

Keywords: Manganese; Olefinic phosphanes; Carbonylmanganese cations

1. Introduction

We have recently described [1,2] octahedral carbonylmanganese complexes containing the ligand tri(1-cyclo-hepta-2,4,6-trienyl)phosphane, $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3} \quad(1 ; \quad[\mathrm{P}]$ if coordinated to a metal). Although the phosphane $\mathbf{1}$ is able to use its olefinic substituents for coordinative bonding to the metal, it is primarily and preferentially attached to Mn through the lone pair of electrons at the phosphorus atom, thus acting as a conventional twoelectron phosphane ligand. In the series of the (neutral) halogeno-substituted carbonylmanganese complexes, only the compounds of the type mer$\left\{\mathrm{Mn}(\mathrm{X})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \quad(\mathrm{X}=\mathrm{Cl}, \quad \mathrm{Br}, \quad \mathrm{I})$ were found to contain a chelating four-electron phos-

[^0]phane ligand [1]. However, cationic carbonylmanganese complexes were expected to form species with olefinic phosphane chelate ligands more readily. We have therefore studied tetrafluoroborate salts of the cations $\left\{\mathrm{Mn}(\mathrm{CO})_{n}[\mathrm{P}]\right\}^{+} \quad(n=5,4,3)$ which are isosteric with the neutral carbonylchromium compounds $\mathrm{Cr}(\mathrm{CO})_{n}[\mathrm{P}]$ ($n=5,4,3$) [3], and we now present reactions in which Mn forms new bonds to either η^{2}-olefin or η^{4}-diene functionalities, respectively, of the $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ ligand.

Only a limited number of cationic complexes containing $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ are known at the present time, among them the halfsandwich species $\left\{\left(\eta^{7}-\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4} \quad$ [3], $\left\{\left(\eta^{6}-\right.\right.$ mesitylene $\left.) \mathrm{Os}(\mathrm{Cl})\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{PF}_{6} \quad[4]$ and $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4} \quad(\mathrm{M}=\mathrm{Ni}, \quad \mathrm{Pd}$, $\mathrm{Pt})$ [5], as well as the cage-shaped cations $\left\{\mathrm{Rh}\left[\mathrm{P}\left(\eta^{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \mathrm{X}\left(\mathrm{X}^{-}=\mathrm{BF}_{4}^{-}, \mathrm{CF}_{3} \mathrm{COO}^{-}, \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$[6] and $\left\{\mathrm{M}\left[\mathrm{P}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \mathrm{PF}_{6}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ [7] in which the
ligand $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ behaves as an eight-electron tripod ligand.

2. Results and discussion

2.1. Syntheses and spectroscopy

The established general route to cationic carbonylmanganese complexes involves halide abstraction from $\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{5}$ or its derivatives. Heating of $\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{5}$ under reflux in acetonitrile leads to fac$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]^{+}$[8], whereas homolytic cleavage of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ by $\mathrm{NO}^{+} \mathrm{PF}_{6}^{-}$in acetonitrile gives $\left[\mathrm{Mn}(\mathrm{CO})_{5}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{+}$[9].

If the reaction between $\left[\mathrm{Mn}(\mathrm{CO})_{5}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{BF}_{4}$ and $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}(\mathbf{1})$ in acetone solution is conducted at r.t., a simple displacement of the acetonitrile ligand takes place slowly to give 2 .

Temperature increase to $50^{\circ} \mathrm{C}$ results in liberation of CO and conversion of the two-electron ligand $[\mathrm{P}]$ into a chelating four-electron ligand $\left[\mathrm{P}^{\prime}\right]$, i.e. 2 is converted to 7. Several other routes to cis $-\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}(7)$ have been explored, as shown in Scheme 1 , among them the cleavage of the di-axially substituted $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ derivative, $a x$, $a x-\left\{\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\}$ (3) [1] with $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$, and bromide abstraction from cis $-\left\{\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\}$ (4b) using AgBF_{4}.

Scheme 2 summarizes the halide abstractions which have been carried out with the help of AgBF_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The conversion of $\mathbf{4 b}$ to $\mathbf{7}$ is straightforward. The analogous reaction of the bis(phosphane) complex mer, trans $-\left\{\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\}$ (5b) leads to the tetrafluoroborate $\mathbf{8}$ which contains both a two-electron and a chelating four-electron phosphane ligand ($[\mathrm{P}]$ and $\left.\left[\mathrm{P}^{\prime}\right]\right)$; the coupling constant ${ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)$ between the two ligating phosphorus atoms is 33 Hz (Table 1). Elimina-
tion of the iodide ligand from mer$\left\{\mathrm{Mn}(\mathrm{I})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \quad(\mathbf{6 c})$ does not result in π-coordination of a second cyclohepta-2,4,6-trienyl substituent, but induces isomerisation of a cyclohepta-2,4,6-trienyl ring into a η^{4}-coordinated norcaradienyl substituent to give 9 . It is obvious that in octahedral complexes an η^{4}-norcaradienyl ring is more attractive for the three-legged piano-stool fragments $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$ and $\left[\mathrm{Cr}(\mathrm{CO})_{3}\right][3]$ than two η^{2}-cyclohepta-2,4,6-trienyl rings. In the case of trigonal-bipyramidal complexes a thermal valence isomerisation of $\mathrm{M}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\right](\mathrm{M}=\mathrm{Fe}, \mathrm{Ru})$ to $\mathrm{M}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]$ has been observed in solution [10], which points again to the higher stability of the bicyclic η^{4}-norcaradienyl ring ligand.

The structures of the cations in 7-9 can be deduced from the pattern of the CO stretching absorptions in the IR spectra (Table 1); the assignments are confirmed in the cases of 7 and 9 by X-ray crystallography (see below). The mer $-\mathrm{Mn}(\mathrm{CO})_{3}$ configuration in $\mathbf{8}$ is expected in analogy to the synthesis of 7 from $\mathbf{4 b}$ (Scheme 2); indeed, the pattern of the $v(\mathrm{CO})$ bands in $\mathbf{8}$ corresponds to that in the neutral halide and pseudohalide compounds, mer, trans $-\left\{\mathrm{Mn}(\mathrm{X})(\mathrm{CO})_{3}[\mathrm{P}]_{2}\right\} \quad(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}(\mathbf{5 b}), \mathrm{I}, \mathrm{NCO}, \mathrm{NCS})$ [2]. In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $7-9$ the signals of the freely pending and of the one π coordinated $\mathrm{C}_{7} \mathrm{H}_{7}$ substituents are distinguishable, the diagnostic upfield shift of the olefinic carbon atoms $\mathrm{C}^{4^{\prime}}, \mathrm{C}^{5^{\prime}}$ (in 7 and $\mathbf{8}$) and of the diene carbons $\mathrm{C}^{3^{\prime \prime}}-\mathrm{C}^{6^{\prime \prime}}$ (in 9) as a result of π-complexation is particularly remarkable. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ chemical shifts clearly indicate whether a $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ ligand contains 3 free cycloheptatrienyl substituents $\left(\delta\left({ }^{31} \mathrm{P}\right)<60\right)$ or only 2 free in addition to one metal-coordinated $\mathrm{C}_{7} \mathrm{H}_{7}$ side-arm $\left(\delta\left({ }^{31} \mathrm{P}\right) 110-130\right)$.

Scheme 1. Routes to cis $-\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}(7)$ by introduction of $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}(\mathbf{1})$ into carbonylmanganese complexes.

6 c
9

Scheme 2. Synthesis of the tetrafluoroborate salts $7-9$ by halide abstraction with AgBF_{4}.

The chelate ring $\left[\mathrm{P}^{\prime}\right]$ in 7 and $\mathbf{8}$ may be opened by suitable two-electron ligands such as isonitriles. Thus, displacement of the π-coordinated double bond by tert .butyl isocyanide leads to $\mathbf{1 0}$ and $\mathbf{1 1}$, respectively.

$$
\begin{aligned}
& \text { cis }-\left\{\mathrm { Mn } (\mathrm { CO }) _ { 4 } \left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \underset{7}{\left.\left.\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}+{ }^{t} \mathrm{BuNC}}\right.\right. \\
& \left.\rightarrow \text { cis- }\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}_{\left.\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]}\right]{ }^{t} \mathrm{BuNC}\right)\right\} \mathrm{BF}_{4} \\
& \text { mer- }\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4} \\
& +{ }^{t} \mathrm{BuNC}_{8} \rightarrow \text { mer, trans- }\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}_{11}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\left({ }^{t} \mathrm{BuNC}\right)\right\} \mathrm{BF}_{4}
\end{aligned}
$$

The ${ }^{13} \mathrm{C}$-NMR spectra of the tri(1-cyclohepta-2,4,6trienyl)phosphane ligands in $\mathbf{1 0}$ and $\mathbf{1 1}$ are considerably simplified as compared with 7 and $\mathbf{8}$, since all $\mathrm{C}_{7} \mathrm{H}_{7}$ substituents are now freely pending again and equivalent, and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signals are now observed all in the typical range $\left(\delta\left({ }^{31} \mathrm{P}\right)<60\right)$ for two-electron $[\mathrm{P}]$ ligands. The two ${ }^{31} \mathrm{P}$ doublets $\left({ }^{2} J(\mathrm{P}, \mathrm{P})=33.0 \mathrm{~Hz}\right)$ in $\mathbf{8}$ collapse into a singlet in $\mathbf{1 1}$.

As expected, bromide abstraction from $\mathbf{4 b}$ and $\mathbf{5 b}$ using AgBF_{4} (Scheme 1) which leads to the tetrafluroborate salts 7 and 8, respectively, can be similarly be carried out with AgPF_{6}. On the contrary, silver

Table 1
Spectroscopic data of the tetrafluoroborate salts 2 and $\mathbf{7 - 9}$

Cation ${ }^{\text {a }}\left(\mathrm{BF}_{4}^{-}\right.$salt $)$	$\left\{\mathrm{Mn}(\mathrm{CO})_{5}[\mathrm{P}]\right\}^{+}(\mathbf{2})$	$\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}^{\prime}\right]\right\}^{+}$(7) [2]	$\left\{\mathrm{Mn}(\mathrm{CO})_{3}[\mathrm{P}]\left[\mathrm{P}^{\prime}\right]\right\}^{+}(\mathbf{8})$	$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}^{\prime \prime}\right]\right\}^{+}(\mathbf{9})$
IR: $v(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	2142w	2102s, 2042w	2049w	2068s
	2078s, 2051s	2026vs, 2004w	1974s, 1953br	2026s, 1999s
		(cis)	(mer)	$(f a c)$
${ }^{13} \mathrm{C}$-NMR: δ values (CDCl_{3})				
Phosphane ${ }^{\text {a,b }}$	[P]	[P^{\prime}]	[P]; [P^{\prime}]	[$\mathrm{P}^{\prime \prime}$]
C^{1}	36.6 [27.2]	38.1 [24.4]	34.4 [25.1]; 37.6 [25.7]	[27.5]
$\mathrm{C}^{2}, \mathrm{C}^{7}$	106.1	107.8, 109.8	100.1; 105.1, 106.1	111.2, 112.0
$\mathrm{C}^{3}, \mathrm{C}^{6}$	129.4 [10.2]	129.0 [8.2], 129.8 [10.2]	129.0 [9.1]; 128.3 [9.1], 128.8 [9.7]	129.7 [8.9], 130.0 [9.4]
$\mathrm{C}^{4}, \mathrm{C}^{5}$	130.9	130.8, 131.3	130.4, 130.6	131.1
(π-coordinated ring) ${ }^{\text {a,b }}$		$\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$:	$\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$:	$\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$:
$\mathrm{C}^{1^{\prime}}$		37.5 [15.0]	36.9 [15.3]	$\mathrm{C}^{1^{\prime \prime}} 39.0$ [40.4]
$\mathrm{C}^{2^{\prime}}, \mathrm{C}^{7^{\prime}}$		136.0	134.9	$\mathrm{C}^{2^{\prime \prime}}, \mathrm{C}^{7^{\prime \prime}} 14.2$ [3.4]
$\mathrm{C}^{3^{\prime}}, \mathrm{C}^{6}$		128.6 [9.4]	128.3	$\mathrm{C}^{3^{\prime \prime}}, \mathrm{C}^{6^{\prime \prime}} 88.0$
$\mathrm{C}^{4}, \mathrm{C}^{5^{\prime}}$		94.5	94.4	$\mathrm{C}^{4 \prime \prime}, \mathrm{C}^{5^{\prime \prime}} 91.8$
${ }^{31} \mathrm{P}$-NMR: δ-values $\left(\mathrm{CDCl}_{3}\right)$	36.1s	121.6s	$42.0 \mathrm{~d}\{33.0\}^{\mathrm{c}} 116.5 \mathrm{~d}\{33.0\}^{\mathrm{c}}$	127.8s

[^1]trifluoroacetate, $\mathrm{Ag}\left(\mathrm{OOC}-\mathrm{CF}_{3}\right)$, leads to substitution of the bromide ligand. The spectroscopic data of the uncharged $\quad \eta^{1}$-trifluoroacetates, cis $-\{\mathrm{Mn}(\mathrm{OOC}-$ $\left.\left.\mathrm{CF}_{3}\right)(\mathrm{CO})_{4}[\mathrm{P}]\right\} \quad(\mathbf{4 d})$ and mer, trans $-\{\mathrm{Mn}(\mathrm{OOC}-$ $\left.\left.\mathrm{CF}_{3}\right)(\mathrm{CO})_{3}[\mathrm{P}]_{2}\right\}(\mathbf{5 d})$ may be compared with the cations of analogous structure in $\mathbf{1 0}$ and $\mathbf{1 1}$ (Table 2). According to the $v(\mathrm{CO})$ stretching frequencies, the electron density at the metal is lower in the cations of $\mathbf{1 0}$ and $\mathbf{1 1}$ than in the neutral complexes of $\mathbf{4 d}$ and $\mathbf{5 d}$ which contain the electron-withdrawing η^{1}-trifluoroacetate ligand.

2.2. X-ray structure analyses

The structures of the cations cis$\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}^{+} \quad$ (in 7) and fac$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}^{+}$(in 9) are shown in Figs. 1 and 2 ; relevant bond lengths and angles are compiled in Tables 3 and 4.

Complex 7 contains two independent forms (A and B) in the monoclinic unit cell $(Z=8)$. The cations A (Table 3) and B have similar molecular dimensions; the anions BF_{4}^{-}are statistically disordered. This disorder affects the quality of the data set. The octahedral arrangement of the ligands around Mn is quite regular with angles close to $90^{\circ}\left(\pm 3^{\circ}\right)$. The atoms of the equatorial plane (including Mn , the carbonyl carbon atoms $\mathrm{C}(23), \mathrm{C}(24)$, $\mathrm{C}(25)$ and the center of the coordinated double bond $\mathrm{C}(4)-\mathrm{C}(5)$) show only minor deviations (av. $\Delta=1.2 \mathrm{pm}$) from this plane; the dihedral angle between the vector $C(4)-C(5)$ and the 'equatorial plane' is 3.2°. The cation cis $-\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}^{+}$in 7 can be compared with the related neutral iodo complex mer$\left\{\mathrm{Mn}(\mathrm{I})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}(6 \mathrm{c})[1]$, which, however, shows larger deviations from an idealized octahedral geometry and possesses a remarkably short Mn-P distance of 225.0(3) pm [1]. In general, the $\mathrm{Mn}-\mathrm{P}$ bond length in cis-halogeno-phosphane-manganese com-

Fig. 1. Structure of the cation in 7.
plexes, cis $-\left\{\mathrm{Mn}(\mathrm{X})(\mathrm{CO})_{4}\left[\mathrm{PR}_{3}\right]\right\}$, is found in the range of 235-240 pm [11-13], (cf. ref. [1]); the $\mathrm{Mn}-\mathrm{P}$ distance in the cations of 7 (232.7(3) pm in A, 232.9(3) pm in B) and $9(232.50(18) \mathrm{pm})$ corresponds to that in the bis(phosphane)-thiocyanato-manganese compound mer, trans $-\left\{\mathrm{Mn}(\mathrm{NCS})(\mathrm{CO})_{3}\left[\mathrm{P}_{\left.\left.\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \quad(232.72(16) \text { and }}\right.\right.$ 234.70 (17) pm [2]). As expected, the bond of the π coordinated double bond $\mathrm{C}(4)-\mathrm{C}(5)$ in 7 (138.2(16) pm) is significantly lengthened with respect to all noncoordinated double bonds of the $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ ligand.

The structure of the cation fac$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}^{+}$in 9 is analogous to the molecular structure of the isoelectronic chromium compound fac- $\left\{\mathrm{Cr}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}$ [3]. The BF_{4}^{-}anions in 9 are slightly disordered. As in the chromium analogue, the two free cycloheptatrienyl substituents (one is equatorially, one axially connected

Table 2
Spectroscopic data

Complex ${ }^{\text {a }}$	$\begin{aligned} & \left\{\mathrm{Mn}(\mathrm{CO})_{4}[\mathrm{P}]\left({ }^{t} \mathrm{BuNC}\right)\right\}^{+} \\ & \left(\mathrm{BF}_{4}^{-} \text {salt, }(\mathbf{1 0})\right) \end{aligned}$	$\begin{aligned} & \left\{\mathrm{Mn}(\mathrm{CO})_{3}[\mathrm{P}]_{2}\left({ }^{t} \mathrm{BuNC}\right)\right\}^{+} \\ & \left(\mathrm{BF}_{4}^{-} \text {salt, }(\mathbf{1 1})\right) \end{aligned}$	$\mathrm{Mn}\left(\mathrm{CF}_{3} \mathrm{COO}\right)(\mathrm{CO})_{4}[\mathrm{P}](\mathbf{4 d})$	$\mathrm{Mn}\left(\mathrm{CF}_{3} \mathrm{COO}\right)(\mathrm{CO})_{3}[\mathrm{P}]_{2}(\mathbf{5 d})$
$\begin{aligned} & \text { IR: } v(\mathrm{CO})\left[\mathrm{cm}^{-1}\right] \\ & \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { 2105s, 2046s } \\ & \text { 2028vs, 1998sh } \\ & \text { (cis) } \end{aligned}$	$\begin{aligned} & \text { 2035m } \\ & \text { 1974s, 1927br } \\ & \text { (mer,trans) } \end{aligned}$	$\begin{aligned} & 2097 \mathrm{~s}, 2030 \mathrm{~s} \\ & 2012 \mathrm{vs}, 1960 \mathrm{~s} \\ & \text { (cis) } \end{aligned}$	$\begin{aligned} & \text { 2014s } \\ & \text { l962vs, 1908br } \\ & \text { (mer, trans) } \end{aligned}$
${ }^{13} \mathrm{C}$-NMR δ values ${ }^{\text {b,c }}$				
tert-butyl	29.8 (Me); 58.2 (C_{q})	25.8 (Me); $61.7\left(\mathrm{C}_{\mathrm{q}}\right)$		
C^{1}	36.6d [27.4]	36.0d [28.0]	35.7d [24.0]	35.9t [11.8]
$\mathrm{C}^{2}, \mathrm{C}^{7}$	108.0	104.3	112.3	108.2
$\mathrm{C}^{3}, \mathrm{C}^{6}$	128.8d [10.2]	128.2d [9.9]	128.2d [10.1]	127.5t [4.6]
$\mathrm{C}^{4}, \mathrm{C}^{5}$	131.0	130.5	130.7	130.1
${ }^{31} \mathrm{P}-\mathrm{NMR}{ }^{\text {b,c }}$	50.2	53.7	49.7	54.6

[^2]

Fig. 2. Structure of the cation in 9 .
to phosphorus) assume an almost ecliptic arrangement with respect to the two CO ligands of the equatorial plane. As in the chromium complex, the distance between phosphorus and the η^{4}-norcaradienyl ring $(\mathrm{P}-\mathrm{C}(1) 177.7(6) \mathrm{pm}$ in 9 , cf. $178.6(2) \mathrm{pm}$ in the chromium compound [3]) is remarkably short; comparable $\mathrm{P}-\mathrm{C}$ bond lengths are observed in phosphonium

Table 3
Selected bond lengths (pm) and bond angles $\left({ }^{\circ}\right)$ in the cation of cis $\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}$ (7)

Bond lengths			
$\mathrm{Mn}-\mathrm{P}$	$232.7(3)$	$\mathrm{C}(22)-\mathrm{O}(1)$	$113.1(15)$
$\mathrm{Mn}-\mathrm{C}(22)$	$184.9(15)$	$\mathrm{C}(23)-\mathrm{O}(2)$	$112.0(13)$
$\mathrm{Mn}-\mathrm{C}(23)$	$186.7(13)$	$\mathrm{C}(24)-\mathrm{O}(3)$	$112.3(13)$
$\mathrm{Mn}-\mathrm{C}(24)$	$181.9(13)$	$\mathrm{C}(25)-\mathrm{O}(4)$	$111.2(13)$
$\mathrm{Mn}-\mathrm{C}(25)$	$188.5(13)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$148.8(17)$
$\mathrm{Mn}-\mathrm{C}(4)$	$213.5(12)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$152.5(19)$
$\mathrm{Mn}-\mathrm{C}(5)$	$242.3(12)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$133.6(17)$
$\mathrm{P}-\mathrm{C}(1)$	$186.6(12)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$145.6(18)$
$\mathrm{P}-\mathrm{C}(8)$	$184.1(12)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$143.0(17)$
$\mathrm{P}-\mathrm{C}(15)$	$190.9(13)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$131.0(17)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$138.2(16)$		
Bond angles			
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(22)$	$177.0(5)$	$\mathrm{Mn}-\mathrm{C}(22)-\mathrm{O}(1)$	$178.3(13)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(23)$	$90.7(4)$	$\mathrm{Mn}-\mathrm{C}(23)-\mathrm{O}(2)$	$175.0(12)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(24)$	$92.7(4)$	$\mathrm{Mn}-\mathrm{C}(24)-\mathrm{O}(3)$	$175.7(11)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(25)$	$88.3(4)$	$\mathrm{Mn}-\mathrm{C}(25)-\mathrm{O}(4)$	$176.0(11)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(4)$	$87.5(3)$	$\mathrm{Mn}-\mathrm{C}(4)-\mathrm{C}(5)$	$73.0(7)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(5)$	$88.6(3)$	$\mathrm{Mn}-\mathrm{C}(5)-\mathrm{C}(4)$	$74.0(7)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$107.6(8)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(1)$	$111.1(4)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(7)$	$111.9(9)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(8)$	$112.6(4)$
$\mathrm{P}-\mathrm{C}(8)-\mathrm{C}(9)$	$117.7(9)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(15)$	$113.3(4)$
$\mathrm{P}-\mathrm{C}(8)-\mathrm{C}(14)$	$114.3(9)$	$\mathrm{C}(22)-\mathrm{Mn}-\mathrm{C}(23)$	$89.6(6)$
$\mathrm{P}-\mathrm{C}(15)-\mathrm{C}(16)$	$112.3(8)$	$\mathrm{C}(22)-\mathrm{Mn}-\mathrm{C}(24)$	$90.3(6)$
$\mathrm{P}-\mathrm{C}(15)-\mathrm{C}(21)$	$118.0(10)$	$\mathrm{C}(22)-\mathrm{Mn}-\mathrm{C}(25)$	$91.6(6)$
$\mathrm{C}(4)-\mathrm{Mn}-\mathrm{C}(5)$	$33.1(4)$	$\mathrm{C}(23-\mathrm{Mn}-\mathrm{C}(24$	$86.6(5)$
$\mathrm{C}(23)-\mathrm{Mn}-\mathrm{C}(25)$	$175.8(5)$	$\mathrm{C}-(24)-\mathrm{Mn}-\mathrm{C}(25)$	$89.4(5)$

salts such as $\left.\left[\mathrm{P}_{\mathrm{C}} \mathrm{C}_{7} \mathrm{H}_{7}\right)_{4}\right]^{+}(181.5-183.6 \mathrm{pm}[14])$ and $\left[\mathrm{PPh}_{4}\right]^{+}$(178-180 pm [14,15]). The norcaradienyl substituent in 9 is present in the chair conformation, with dihedral angles $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7) / \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ of 113.9° and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7) / \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-$ $\mathrm{C}(6)$ of 145.1°. The manganese atom forms a nearly perfect plane with the carbonyl carbon atoms $\mathrm{C}(22)$, $\mathrm{C}(24)$ and the center of the diene system $\mathrm{C}(3)-\mathrm{C}(4)-$ $C(5)-C(6)$. The inner carbon atoms $C(4)$ and $C(5)$ of the diene unit in the cation of $\mathbf{9}$ are closer to the metal (Mn $\mathrm{C}(4) 212.9(8)$ and $\mathrm{Mn}-\mathrm{C}(5) 213.5(7) \mathrm{pm}$) than the corresponding carbon atoms in the neutral chromium analogue ($\mathrm{Cr}-\mathrm{C} 216.0(2)$ and 216.9(2) [3]), and the manganese-carbonyl distances (Mn-C(22) 183.6(9) and $\mathrm{Mn}-\mathrm{C}(24) 182.8(9) \mathrm{pm}$) are also slightly shorter than the analogous $\mathrm{Cr}-\mathrm{CO}$ distances (185.7(2) and 186.0(2) pm [3]), indicating slightly stronger manganese-carbon bonds as a result of the reduced charge density in the cation and therefore slightly reduced back-bonding to the π-ligands.

Table 4
Selected bond lengths (pm) and bond angles $\left({ }^{\circ}\right)$ in the cation of fac$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}(\mathbf{9})$

Bond lengths			
$\mathrm{Mn}-\mathrm{P}$	$232.50(18)$	$\mathrm{C}(22)-\mathrm{O}(1)$	$113.7(11)$
$\mathrm{Mn}-\mathrm{C}(22)$	$183.6(9)$	$\mathrm{C}(23)-\mathrm{O}(2)$	$112.3(9)$
$\mathrm{Mn}-\mathrm{C}(23)$	$184.4(8)$	$\mathrm{C}(24)-\mathrm{O}(3)$	$113.5(10)$
$\mathrm{Mn}-\mathrm{C}(24)$	$182.8(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$152.7(11)$
$\mathrm{Mn}-\mathrm{C}(3)$	$225.6(8)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$151.7(10)$
$\mathrm{Mn}-\mathrm{C}(4)$	$212.9(8)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$149.0(11)$
$\mathrm{Mn}-\mathrm{C}(5)$	$213.5(7)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$150.5(13)$
$\mathrm{Mn}-\mathrm{C}(6)$	$228.8(7)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$141.0(10)$
$\mathrm{P}-\mathrm{C}(1)$	$177.7(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$141.2(15)$
$\mathrm{P}-\mathrm{C}(8)$	$183.5(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$138.9(11)$
$\mathrm{P}-\mathrm{C}(15)$	$187.1(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$146.0(11)$
Bond angles			
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(22)$	$87.8(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.5(8)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(23)$	$165.7(3)$	$\mathrm{Mn}-\mathrm{C}(22)-\mathrm{O}(1)$	$176.5(8)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(24)$	$85.6(2)$	$\mathrm{Mn}-\mathrm{C}(23)-\mathrm{O}(2)$	$179.7(8)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(3)$	$80.6(2)$	$\mathrm{Mn}-\mathrm{C}(24)-\mathrm{O}(3)$	$179.5(8)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(4)$	$113.3(2)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(1)$	$101.6(2)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(5)$	$110.6(2)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(8)$	$121.1(2)$
$\mathrm{P}-\mathrm{Mn}-\mathrm{C}(6)$	$76.92(19)$	$\mathrm{Mn}-\mathrm{P}-\mathrm{C}(15)$	$118.2(2)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$111.3(5)$	$\mathrm{C}(22)-\mathrm{Mn}-\mathrm{C}(23)$	$83.8(4)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(7)$	$107.9(5)$	$\mathrm{C}(22)-\mathrm{Mn}-\mathrm{C}(24)$	$100.3(4)$
$\mathrm{P}-\mathrm{C}(8)-\mathrm{C}(9)$	$111.7(6)$	$\mathrm{C}(23)-\mathrm{Mn}-\mathrm{C}(24)$	$84.6(4)$
$\mathrm{P}-\mathrm{C}(8)-\mathrm{C}(14)$	$118.0(6)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(8)$	$107.0(4)$
$\mathrm{P}-\mathrm{C}(15)-\mathrm{C}(16)$	$114.6(5)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(15)$	$108.9(3)$
$\mathrm{P}-\mathrm{C}(15)-\mathrm{C}(21)$	$114.4(5)$	$\mathrm{C}(8)-\mathrm{P}-\mathrm{C}(15)$	$99.5(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121.0(6)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.4(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$60.0(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$113.0(7)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	$60.7(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$116.6(8)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$121.8(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$117.8(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$59.3(5)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.4(8)$

3. Conclusion

We have shown that mononuclear carbonylmanganese complexes may contain tri(cyclohepta-2,4,6-trienyl)phosphane (1) either as a regular two-electron phosphane ligand ([P]), or as a chelate ligand in which one of the 3 seven-membered $\mathrm{C}_{7} \mathrm{H}_{7}$ substituents acts as a η^{2}-monoolefin ($\left[\mathrm{P}^{\prime}\right]$) or η^{4}-diene ($\left[\mathrm{P}^{\prime \prime}\right]$) functionality in addition to the lone pair of electrons at the phosphorus atom. At least 2 cyclohepta-2,4,6-trienyl substituents remain freely pending. The function of $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ as two-, four- or six-electron ligand ($[\mathrm{P}],\left[\mathrm{P}^{\prime}\right]$ or $\left[\mathrm{P}^{\prime \prime}\right]$, respectively) is clearly indicated by characteristic chemical shifts in the ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra.

4. Experimental

All reactions were carried out in Schlenk vessels under an atmosphere of dry argon; the solvents were routinely dried under reflux (hexane, cyclohexane, diethyl ether and tetrahydrofuran over Na / K alloy, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over $\mathrm{P}_{4} \mathrm{O}_{10}$) and then distilled in a stream of argon. Acetone was dried over molecular sieve and distilled under argon.

The ligand $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}(\mathbf{1})$ was prepared from $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ and tropylium bromide (1:3) according to the established procedure [14]. The parent carbonylmanganese complex, $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, is commercially available and can easily be converted into $\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{5}$ by a stoichiometric reaction with Br_{2} in either CCl_{4} or CS_{2} solution [16,17]. The synthesis of the neutral phosphane complexes ax, ax $-\left\{\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\} \quad$ (3) [1], cis$\left\{\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \quad$ (4b) [1], mer, trans $\left\{\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\}$ (5b) [1,2] and mer, trans$\left\{\mathrm{Mn}(\mathrm{I})(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\}$ (6c) [1] has been described before.

4.1. Preparation of the trifluoroacetate complexes $\mathbf{4 d}$ and 5d

4.1.1. cis $-\left\{\mathrm{Mn}\left(\mathrm{OOC}-\mathrm{CF}_{3}\right)(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\}$ (4d)

Silver trifluoroacetate ($33 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added to a yellow solution of the bromide $\mathbf{4 b}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was stirred for 15 min . at r.t. The reaction mixture was filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to remove the precipitate of AgBr . The clear yellow solution was concentrated to a volume of ca. 2 ml and chromatographed over silica (in hexane). Elution with hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) produced a yellow zone which contained $75 \mathrm{mg}(86 \%)$ of the trifluoroacetate $\mathbf{4 d}$, dec. $88^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta=2.66\left(\mathrm{dt}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 5.08$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 5.96\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right)$ and $6.25(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}^{4}, \mathrm{H}^{5}$).

4.1.2. mer, trans- $\{\mathrm{Mn}(\mathrm{OOC}-$
 $\left.\left.\mathrm{CF}_{3}\right)(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\}(5 \mathrm{~d})$

In analogy to the synthesis of $\mathbf{4 d}$, silver trifluoroacetate $(29 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added to the solution of the bromide $\mathbf{5 b}(110 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was stirred for 20 min at r.t. The precipitate of AgBr was removed by filtration over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under vacuum. The yellow, oily residue was taken up in 5 ml of hexane and the mixture exposed to ultrasound until a yellow solid had been formed. The hexane solution was discarded, and the ultrasound treatment repeated. The product $5 \mathbf{d}$ was finally dried in a high vacuum. Yellow powder, dec. $115^{\circ} \mathrm{C}$. Yield $78 \mathrm{mg}(70 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta=2.65\left(\mathrm{dt}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 5.35$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 6.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right)$ and $6.28(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}^{4}, \mathrm{H}^{5}$).

4.2. Preparation of the tetrafluoroborate salts $\mathbf{2}$ and 7-11

4.2.1. $\left\{\mathrm{Mn}(\mathrm{CO})_{5}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \mathrm{BF}_{4}$ (2)

A solution of $113 \mathrm{mg}(0.37 \mathrm{mmol}) \mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}(\mathbf{1})$ in 2 ml of acetone was added to the yellow solution of 120 mg $(0.37 \mathrm{mmol})\left\{\mathrm{Mn}(\mathrm{CO})_{5}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\} \mathrm{BF}_{4}$ in 10 ml of acetone, and the combined solution was stirred for 24 h at r.t. The solvent was evaporated under vacuum, the residue rinsed repeatedly with small portions $(0.5 \mathrm{ml})$ of $\mathrm{Et}_{2} \mathrm{O}$ in order to remove traces of oily impurities, and the yellow product finally dried in a high vacuum. Yield $208 \mathrm{mg}(96 \%)$, dec. $87^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=2.55\left(\mathrm{dt}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 4.98$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 6.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right)$ and $6.59(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}^{4}, \mathrm{H}^{5}$).

4.2.2. $\operatorname{cis}-\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}$ (7)

a) Thermal decarbonylation of $\left\{\mathrm{Mn}(\mathrm{CO})_{5}\right.$ $\left.\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \mathrm{BF}_{4}$ (2): a yellow solution containing $95 \mathrm{mg}(0.16 \mathrm{mmol}) \mathbf{2} \mathrm{in} 10 \mathrm{ml}$ of acetone was stirred for 2 h at $50^{\circ} \mathrm{C}$. The solvent was then evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and kept at $-30^{\circ} \mathrm{C}$ over night for crystallization. Yield $42 \mathrm{mg}(47 \%)$.
b) Reaction of ax, ax $-\left\{\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\right\}$ (3) with NOBF_{4} : the yellow solution of $132 \mathrm{mg}(0.14 \mathrm{mmol})$ 3 in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $33 \mathrm{mg}(0.28$ mmol) NOBF_{4}. Gas evolution (NO) was observed and the colour became light-yellow. The cloudy reaction mixture was stirred for 1 h , then filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and brought to dryness. The oily product was washed twice with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{ml})$, dried under high vacuum and redissolved in $2-3 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Crystallization over night at $-30^{\circ} \mathrm{C}$ gave $83 \mathrm{mg}(53 \%) 7$.
c) Stepwise synthesis starting from $\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{5}$: An orange solution of $137 \mathrm{mg} \quad(0.50 \mathrm{mmol})$ $\operatorname{Mn}(\mathrm{Br})(\mathrm{CO})_{5}$ in 20 ml of cyclohexane was treated with a tenfold excess of $\mathrm{AlBr}_{3}(1.33 \mathrm{~g}, 5 \mathrm{mmol})$ and the mixture heated under reflux for 1 h . Then $\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}(\mathbf{1})(152 \mathrm{mg}, 0.5 \mathrm{mmol}$, dissolved in 5 ml of cyclohexane) was added and the reaction mixture stirred at r.t. for another hour. Finally, an equimolar amount (0.5 mmol) HBF_{4}, dissolved in 10 ml of water, was added in small portions, which caused the precipitation of 7 . The whole reaction mixture was filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the filtrate brought to dryness and the yellow residue 7 washed with small amounts (0.5 ml) of water. Yield $95 \mathrm{mg}(35 \%)$, dec. $134^{\circ} \mathrm{C}$.
d) Halide abstraction from cis $\left\{\mathrm{Mn}(\mathrm{Br})(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\right\} \quad(4 \mathrm{~b})$: silver tetrafluoroborate, $\mathrm{AgBF}_{4}(56 \mathrm{mg}, 0.29 \mathrm{mmol})$, was added to a yellow solution of $160 \mathrm{mg}(0.29 \mathrm{mmol}) \mathbf{4 b}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was then stirred for 30 min . at ambient temperature. The precipitate of AgBr was removed by filtration over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the clear yellow solution either concentrated for crystallization (at $-30^{\circ} \mathrm{C}$ over night) or brought to dryness. The yellow powder was washed with small portions $(0.5 \mathrm{ml})$ of $\mathrm{Et}_{2} \mathrm{O}$ and dried in a high vacuum. Yield $155 \mathrm{mg}(96 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=2.14\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 5.05$ and $5.26\left(\mathrm{~m}, \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{H}^{2}\right.$ and/or $\left.\mathrm{H}^{7}\right), 5.28(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{1^{\prime}}\right), 6.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2^{\prime}}, \mathrm{H}^{7^{\prime}}\right.$ and $\left.\mathrm{H}^{4^{\prime}}, \mathrm{H}^{5^{\prime}}\right), 6.36(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left.\mathrm{H}^{3}, \mathrm{H}^{6}\right), 6.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right), 6.60 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3^{\prime}}, \mathrm{H}^{6}\right)$.

4.2.3. mer, trans-

$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}$ (8)
A yellow solution containing $225 \mathrm{mg}(0.27 \mathrm{mmol}) \mathbf{5 b}$ in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred in the presence of 53 mg (0.27 mmol) AgBF_{4} for 30 min . The reaction mixture was concentrated and the precipitate of AgBr removed by filtration over silica. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used to wash out traces of unreacted $\mathbf{5 b}$, before $\mathbf{8}$ was eluted from the silica column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}$ (1:1). The product $\mathbf{8}$ is an orange solid, dec. $140^{\circ} \mathrm{C}$. Yield $210 \mathrm{mg}(93 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$ ligand: $\delta=2.11(\mathrm{dt}, 3 \mathrm{H}$, $\left.\mathrm{H}^{1}\right), 4.87\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 6.39\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right), 6.60(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right) . \mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ ligand: $\delta=2.02(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}^{1}\right), 5.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1^{\prime}}\right), 5.09$ and $5.23(\mathrm{~m}, \mathrm{~m}, 2 \times 2 \mathrm{H}$, H^{2} and/or $\left.\mathrm{H}^{7}\right), 5.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4^{\prime}}, \mathrm{H}^{5^{\prime}}\right), 6.18(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{2^{\prime}}, \mathrm{H}^{7^{\prime}}\right), 6.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right), 6.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right), 6.62$ (m, 2H, $\mathrm{H}^{3^{\prime}}, \mathrm{H}^{6^{\prime}}$).

4.2.4. $\mathrm{fac}-\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4}$ (9)

A red solution of $142 \mathrm{mg}(0.25 \mathrm{mmol}) \mathbf{6 c}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reacted instantaneously with AgBF_{4} (48 mg , 0.25 mmol), as indicated by the precipitation of AgI . After 30 min the reaction mixture was concentrated and
added on top of a chromatography column filled with silica (in hexane). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave traces of unreacted 6c, and finally 9 was eluted with acetone. Orange solid, dec. $128^{\circ} \mathrm{C}$. Yield 118 mg (89%). Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to single-crystals which were suitable for X -ray structure analysis.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1^{\prime \prime}}\right), 1.53(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}^{2^{\prime \prime}}, \mathrm{H}^{7^{\prime \prime}}\right), 3.45\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 4.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3^{\prime \prime}}, \mathrm{H}^{6^{\prime \prime}}\right)$, 5.15 and $5.24\left(\mathrm{~m}, \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{H}^{2}\right.$ and/or $\left.\mathrm{H}^{7}\right), 6.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{4^{\prime \prime}}, \mathrm{H}^{5^{\prime \prime}}\right), 6.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{6}\right), 6.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right)$. (The doubly-primed hydrogen atoms refer to the η^{4} norcaradienyl substituent).

4.2.5. cis- $\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]\left({ }^{t} \mathrm{BuNC}\right)\right\} \mathrm{BF}_{4}$ (10)

A yellow solution containing $80 \mathrm{mg}(0.14 \mathrm{mmol}) 7$ and $16 \mu \mathrm{l}$ (0.14 mmol) tert-butyl isocyanide in 5 ml of acetone was stirred at $45^{\circ} \mathrm{C}$ over night (14h). The solution was brought to dryness in a high vacuum, the residue washed twice with 2 ml of $\mathrm{Et}_{2} \mathrm{O}$ and dried under high vacuum. Yellow solid, dec. $116{ }^{\circ} \mathrm{C}$, yield 85 mg (95\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43$ $\left(\mathrm{dt}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 5.02\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 6.37\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3} \mathrm{H}^{6}\right)$, $6.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right)$.

4.2.6. mer, trans- $\left\{\mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right]_{2}\left({ }^{t} \mathrm{BuNC}\right)\right\} B F_{4}$ (11)

A yellow solution of $58 \mathrm{mg}(0.07 \mathrm{mmol}) 8$ and $8 \mu \mathrm{l}$ $(0.07 \mathrm{mmol})$ tert-butyl isocyanide in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at r.t. for 4 h . Work-up (as described for 10) gave $58 \mathrm{mg}(90 \%)$ of a yellow solid, dec. $139^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38$ $\left(\mathrm{dt}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 4.91\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{7}\right), 6.36\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3} \mathrm{H}^{6}\right)$, $6.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}, \mathrm{H}^{5}\right)$.

4.3. Crystal structures of 7 and 9

The intensity data were collected on a Siemens P4 diffractometer with $\mathrm{Mo}-\mathrm{K}_{\alpha}$-radiation $(\lambda=71.073 \mathrm{pm}$, graphite monochromator) at r.t. The hydrogen atoms are in calculated positions. All non-hydrogen atoms were refined with anisotropic temperature factors. The hydrogen atoms were refined applying the riding model with fixed isotropic temperature factors.

$$
\begin{equation*}
\text { cis }-\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4} \tag{7}
\end{equation*}
$$ $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{O}_{4} \mathrm{PMn}$, irregular block of dimensions $0.18 \times 0.14 \times 0.12 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c$; $a=1692.5(2), \quad b=1768.7(2), \quad c=1669.6(2) \mathrm{pm}, \quad \beta=$ 95.494(8) ${ }^{\circ}, Z=8, \mu=0.655 \mathrm{~mm}^{-1} ; 10207$ reflections collected in the range $2-25^{\circ}$ in $\vartheta, 8623$ reflections independent, 3823 reflections assigned to be observed $(I>2 \sigma(I))$. Full-matrix least-squares refinement with 617 parameters, $R_{1} / w R_{2}$-values $0.110 / 0.281$, absorption correction (ψ-scans), min./max. transmission factors 0.3179/0.3687; max./min. residual electron density $1.481 /-0.671$ e $10^{-6} \mathrm{pm}^{-3}$.

$$
\begin{equation*}
\text { trans }-\left\{\mathrm { Mn } (\mathrm { CO }) _ { 3 } \left[\mathrm{P}^{\left.\left.\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\right\} \mathrm{BF}_{4} . . .3 ~}\right.\right. \tag{9}
\end{equation*}
$$ $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PMn}$, yellow prism of dimensions $0.20 \times$ $0.16 \times 0.12 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$; $a=904.3(2), \quad b=1157.6(2), \quad c=2240.3(4) \mathrm{pm}, \quad Z=4$, $\mu=0.687 \mathrm{~mm}^{-1} ; 3033$ reflections collected in the range $2-25^{\circ}$ in $\vartheta, 2848$ reflections independent, 2473 reflections assigned to be observed $(I>2 \sigma(I))$. Full-matrix least-squares refinement with 309 parameters, $R_{1} / w R_{2}$ values $0.064 / 0.174$, absorption correction (ψ-scans), min./max. transmission factors $0.0621 / 0.2451$; max./ \min. residual electron density $0.798 /-0.465$ e 10^{-6} pm^{-3}.

5. Supplementary material

Crystallographic data (excluding structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 205067 and 205066 for structures 7 and 9 , respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

[1] M. Herberhold, W. Milius, A. Pfeifer, Z. Naturforsch. Teil b 58 (2003) 1.
[2] M. Herberhold, W. Milius, A. Pfeifer, Z. Naturforsch. Teil b 58 (2003) 11.
[3] M. Herberhold, K. Bauer, W. Milius, J. Organomet. Chem. 545546 (1997) 267.
[4] M. Müller, M. Herberhold, unpublished results.
[5] M. Herberhold, Th. Schmalz, W. Milius, B. Wrackmeyer, Inorg. Chim. Acta 334 (2002) 10.
[6] M. Herberhold, St. Eibl, W. Milius, J. Organomet. Chem. 621 (2001) 166.
[7] M. Herberhold, Th. Schmalz, W. Milius, B. Wrackmeyer, Z. Naturforsch. Teil b 57 (2002) 255.
[8] R.H. Reimann, E. Singleton, J. Chem. Soc. Dalton Trans. (1974) 808.
[9] (a) D. Drew, D.J. Darensbourg, M.Y. Darensbourg, Inorg. Chem. 14 (1975) 1579;
(b) N.G. Connelly, L.F. Dahl, J. Chem. Soc. Chem. Commun. (1970) 880.
[10] M. Herberhold, K. Bauer, W. Milius, J. Organomet. Chem. 563 (1998) 227.
[11] H. Vahrenkamp, Chem. Ber. 104 (1971) 49.
[12] E. Lindner, R. Fawzi, H.A. Mayer, K. Eichele, K. Pohmer, J. Organomet. Chem. 386 (1990) 63.
[13] G. Effinger, W. Hiller, I.-P. Lorenz, Z. Naturforsch. Teil b 42 (1987) 1315.
[14] M. Herberhold, K. Bauer, W. Milius, Z. Anorg. Allg. Chem. 620 (1994) 2108.
[15] (a) E.E. Schweizer, C.J. Baldacchini, A.L. Rheingold, Acta Crystallogr. Sect. C 45 (1989) 1236;
(b) N.W. Allcock, M. Pennington, G.R. Willey, Acta Crystallogr. Sect. C 41 (1985) 1549;
(c) U. Müller, Z. Naturforsch Teil b 34 (1979) 1064.
[16] E.W. Abel, G. Wilkinson, J. Chem. Soc. (1959) 1501.
[17] M.H. Quick, R.J. Angelici, K.J. Reimer, A. Shaver, Inorg. Synth. 19 (1979) 158.

[^0]: * Corresponding author. Tel.: +49-921-55-2540; fax: +49-921-552157.

 E-mail address: max.herberhold@uni-bayreuth.de (M. Herberhold).

[^1]: ${ }^{\text {a }}$ Abbreviations: $[\mathrm{P}]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3},\left[\mathrm{P}^{\prime}\right]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{7}\right),\left[\mathrm{P}^{\prime \prime}\right]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$. The ${ }^{13} \mathrm{C}$ atoms of the $\eta^{2}-\left(\mathrm{C}^{4}-\mathrm{C}^{5^{\prime}}\right)$ cycloheptatrienyl ring are primed, those of the $\eta^{4}-\left(\mathrm{C}^{3^{\prime \prime}}-\mathrm{C}^{6^{\prime \prime}}\right)$ norcaradienyl substituent are doubly-primed.
 ${ }^{\mathrm{b}}$ The ${ }^{13} \mathrm{C}$ signals are doublets if a coupling constant, $\left[J\left({ }^{31} \mathrm{P},{ }^{13} \mathrm{C}\right)\right]$, is quoted. All other ${ }^{13} \mathrm{C}$-NMR signals are singlets.
 ${ }^{c}$ Coupling constant, $\left\{{ }^{2} J\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right)\right\}$.

[^2]: ${ }^{\mathrm{a}}$ Abbreviation: $[\mathrm{P}]=\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}$.
 ${ }^{\mathrm{b}}$ NMR spectra in $\mathrm{CDCl}_{3}(\mathbf{1 0}$ and $\mathbf{1 1})$ or $\mathrm{C}_{6} \mathrm{D}_{6}(\mathbf{4 d}$ and $\mathbf{5 d})$.
 ${ }^{c}$ Coupling constants $\left[J\left({ }^{31} \mathrm{P},{ }^{13} \mathrm{C}\right)\right]$ in brackets; all ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signals are singlets.

